HCV TESTING AND LINKAGE TO CARE

Expansions and notes for abbreviations used in this section can be found in Methods Table 3. [1]

A summary of recommendations for Testing and Linkage to Care is found in the BOX [2].

HCV testing is recommended at least once for persons born between 1945 and 1965.

Rating: Class I, Level B

Other persons should be screened for risk factors for HCV infection, and one-time testing should be performed for all persons with behaviors, exposures, and conditions associated with an increased risk of HCV infection.

1. Risk behaviors
 - Injection-drug use (current or ever, including those who injected once)
 - Intranasal illicit drug use

2. Risk exposures
 - Long-term hemodialysis (ever)
 - Getting a tattoo in an unregulated setting
 - Healthcare, emergency medical, and public safety
workers after needle sticks, sharps, or mucosal exposures to HCV-infected blood

- Children born to HCV-infected women
- Prior recipients of transfusions or organ transplants, including persons who:
 - were notified that they received blood from a donor who later tested positive for HCV infection
 - received a transfusion of blood or blood components, or underwent an organ transplant before July 1992
 - received clotting factor concentrates produced before 1987
- Persons who were ever incarcerated

3. Other medical conditions

- HIV infection
- Unexplained chronic liver disease and chronic hepatitis including elevated alanine aminotransferase levels

Rating: Class I, Level B

Of the estimated 2.7 million to 3.9 million persons (1999 to 2008 National Health and Nutrition Examination Survey data [Armstrong, 2006 [3]]) chronically infected with HCV in the United States, 45% to 85% are unaware that they are infected. (Smith, 2012 [4]) Identification of those with active infection is the first step toward improving health outcomes among persons with HCV infection and preventing transmission. (Smith, 2012 [4]; (US Preventive Services Task Force, 2013 [5]); (Centers for Disease Control and Prevention, 1998 [6])

HCV testing is recommended in select populations based on demography, prior exposures, high-risk behaviors, and medical conditions. Recommendations for testing are based on HCV prevalence in these populations, proven benefits of care and treatment in reducing the risk of hepatocellular carcinoma and all-cause mortality, and the potential public health benefit of reducing transmission through early treatment, viral clearance, and reduced risk behaviors. (Smith, 2012 [4]; (US Preventive Services Task Force, 2013 [5]); (Centers for Disease Control and Prevention, 1998 [6])

HCV is primarily transmitted through percutaneous exposure to blood. Other modes of transmission include mother-to-infant and contaminated devices shared for non-injection drug use; sexual transmission also occurs but generally seems to be inefficient except among HIV-infected men who have unprotected sex with men. (Schmidt, 2014 [7]) The most important risk for HCV infection is injection-drug use, accounting for at least 60% of acute HCV infections in the United States. Health-care exposures are important sources of transmission, including the receipt of blood products before 1992 (after which routine screening of blood supply was implemented),
receipt of clotting factor concentrates before 1987, long-term hemodialysis, needle-stick injuries among healthcare workers, and patient-to-patient transmission resulting from poor infection control practices. Other risk factors include having been born to an HCV-infected mother, having been incarcerated, and having received a tattoo in an unregulated setting. The importance of these risk factors might differ based on geographic location and population. (US Preventive Services Task Force, 2013 [5]); (Centers for Disease Control and Prevention, 1998 [6]). An estimated 29% of incarcerated persons in North America are anti-HCV positive, supporting the recommendation to test this population for HCV. (Larney, 2013 [8]) Because of shared transmission modes, persons with HIV infection are at risk for HCV; sexual transmission is a particular risk for HIV-infected men who have unprotected sex with men. (Hosein, 2013 [9]); (van de Laar, 2010 [10]) Recent data also support testing in all cadaveric and living solid-organ donors because of the risk of HCV infection posed to the recipient. (Seem, 2013 [11]); (Lai, 2013 [12])

In 2012, CDC expanded its guidelines originally issued in 1998 (Centers for Disease Control and Prevention, 1998 [6]) for risk-based HCV testing with a recommendation to offer a 1-time HCV test to all persons born between 1945 and 1965 without prior ascertainment of HCV risk-factors. This recommendation was supported by evidence demonstrating that a risk-based strategy alone failed to identify more than 50% of HCV infections in part due to patient underreporting of their risk and provider limitations in ascertaining risk-factor information. Furthermore, persons in the 1945 to 1965 birth cohort accounted for nearly three-fourths of all HCV infections, with a 5-times higher prevalence (3.25%) than other persons, reflecting a higher incidence of HCV infections in the 1970s and 1980s (peaking at 230,000 versus 15,000 in 2009). A recent retrospective review showed that 68% of persons with HCV infection would have been identified through a birth-cohort testing strategy, whereas only 27% would have been screened with the risk-based approach. (Mahajan, 2013 [13]) The cost-effectiveness of 1-time birth cohort testing is comparable to that of current risk-based screening strategies. (Smith, 2012 [4])

CDC and the US Preventive Services Task Force (USPSTF) both recommend a 1-time HCV test in asymptomatic persons belonging to the 1945 to 1965 birth cohort and other persons based on exposures, behaviors, and conditions that increase risk for HCV infection.

Annual HCV testing is recommended for persons who inject drugs and for HIV-seropositive men who have unprotected sex with men. Periodic testing should be offered to other persons with ongoing risk factors for exposure to HCV.

Rating: Class IIA, Level C

Evidence regarding the frequency of testing in persons at risk for ongoing exposure to HCV is lacking; therefore, clinicians should determine the periodicity of testing based on the risk of reinfection. Because of the high incidence of HCV infection among persons who inject drugs and among HIV-infected MSM who have unprotected sex (Aberg, 2013 [14]); (Linas, 2012 [15]); (Wandeler, 2012)
An anti-HCV test is recommended for HCV testing, and if the result is positive, current infection should be confirmed by a sensitive RNA test.

Rating: Class I, Level A

Among persons with a negative anti-HCV test who are suspected of having liver disease, testing for HCV RNA or follow-up testing for HCV antibody is recommended if exposure to HCV occurred within the past 6 months; testing for HCV RNA can also be considered in persons who are immunocompromised.

Rating: Class I, Level C

Among persons suspected of reinfection after previous spontaneous or treatment-related viral clearance, initial HCV-RNA testing is recommended because an anti-HCV test is expected to be positive.

Rating: Class I, Level C

Quantitative HCV RNA testing is recommended prior to the initiation of antiviral therapy to document the baseline level of viremia (ie, baseline viral load).

Rating: Class I, Level A

Testing for HCV genotype is recommended to guide selection of the most appropriate antiviral regimen.

Rating: Class I, Level A
If found to have positive results for anti-HCV test and negative results for HCV RNA by PCR, persons should be informed that they do not have evidence of current (active) HCV infection.

Rating: Class I, Level A

All persons recommended for HCV testing should first be tested for HCV antibody (anti-HCV) (Centers for Disease Control and Prevention [CDC], 2013 [20]; Alter, 2003 [21]) using an FDA-approved test. FDA-approved tests include laboratory-based assays and a point-of-care assay (ie, OraQuick HCV Rapid Antibody Test [OraSure Technologies]). (Lee, 2011 [22]) The latter is an indirect immunoassay with a sensitivity and specificity similar to those of FDA-approved laboratory-based HCV antibody assays.

A positive test result for anti-HCV indicates either current (active) HCV infection (acute or chronic), past infection that has resolved, or a false-positive test result. (Pawlotsky, 2002 [23]) Therefore, an HCV nucleic acid test (NAT) to detect viremia is necessary to confirm current (active) HCV infection and guide clinical management, including initiation of HCV treatment. HCV RNA testing should also be performed in persons with a negative anti-HCV test who are either immunocompromised (eg, persons receiving chronic hemodialysis) (KDIGO, 2008 [24]) or who might have been exposed to HCV within the last 6 months (including those who are possibly reinfected after previous spontaneous or treatment-related viral clearance) because these persons may be anti-HCV negative. An FDA-approved quantitative or qualitative NAT with a detection level of 25 IU/mL or lower should be used to detect HCV RNA. Testing and Linkage to Care Table 1 [25] lists FDA-approved, commercially available anti-HCV screening assays. Testing and Linkage to Care Figure 1 [26] shows the CDC-recommended testing algorithm.
Prior to the initiation of HCV therapy, quantitative HCV RNA testing is necessary to document the baseline level of viremia (ie, viral load), because the degree of initial viral decline is a crucial marker of the effectiveness of treatment. Testing for HCV genotype helps to guide selection of the most appropriate treatment regimen. Persons who have positive results for an anti-HCV test and negative results for HCV RNA by PCR should be informed that they do not have laboratory evidence of current (active) HCV infection. Additional HCV testing is typically unnecessary. However, some practitioners or persons may seek additional testing to learn if the HCV antibody test represents a remote HCV infection that has resolved or a false-positive result. For patients with no apparent risk for HCV infection, the likelihood of a false-positive HCV antibody test is directly related to the HCV prevalence in the tested population; false-positive test results for anti-HCV are most common for populations with a low prevalence of HCV infection. (Alter, 2003 [21]) If further testing is desired to distinguish between true positivity and biologic false positivity for HCV antibody, testing may be done with a second FDA-approved HCV antibody assay that is different from the assay used for initial antibody testing. A biologic false result should not occur with 2 different tests. (Vermeersch, 2008 [27]; (Centers for Disease Control and Prevention [CDC]), 2013 [20]) The HCV RNA test can be repeated when there is a high index of suspicion of infection or in patients with prior or ongoing risk factors for HCV infection.

Persons with current (active) HCV infection should receive education and interventions aimed at reducing progression of liver disease and preventing transmission of HCV.

Rating: Class IIa, Level B

1. Abstinence from alcohol and, when appropriate, interventions to facilitate cessation of alcohol consumption should be advised for all persons with HCV infection.

Rating: Class IIa, level B

2. Evaluation for other conditions that may accelerate liver fibrosis, including HBV and HIV infections, is recommended for all persons with HCV infection.

Rating: Class IIb, level B

3. Evaluation for advanced fibrosis, using liver biopsy, imaging, or non-invasive markers, is recommended in all persons with HCV infection to facilitate an appropriate decision regarding HCV treatment strategy.
and determine the need for initiating additional screening measures (eg, hepatocellular carcinoma [HCC] screening).

Rating: Class I, Level B

4. **Vaccination against hepatitis A and hepatitis B is recommended for all persons with HCV infection who are susceptible to these types of viral hepatitis.**

Rating: Class IIa, Level C

5. **All persons with HCV infection should be provided education on how to avoid HCV transmission to others.**

Rating: Class I, level C

In addition to receiving therapy, HCV-infected persons should be educated about how to prevent further damage to their liver. Most important is prevention of the potential deleterious effect of alcohol. Numerous studies have found a strong association between the use of excess alcohol and the development or progression of liver fibrosis and even the development of HCC. (Poynard, 1997 [28]; Harris, 2001 [29]; Wiley, 1998 [30]; Corrao, 1998 [31]; Bellentani, 1999 [32]; Noda, 1996 [33]; Safdar, 2004 [34])

Excess alcohol intake may also cause steatohepatitis. The daily consumption of more than 50 grams of alcohol has a high likelihood of worsening fibrosis. Some studies indicate that daily consumption of smaller amounts of alcohol also have a deleterious effect on the liver; however, these data are controversial. (Westin, 2002 [35]) Alcohol screening and brief interventions such as those outlined by the National Institute of Alcohol Abuse and Alcoholism (http://pubs.niaaa.nih.gov/publications/Practitioner/CliniciansGuide2005/clinicians_guide.htm [36]) have been demonstrated to reduce alcohol consumption and episodes of binge drinking in the general population and among HCV-infected persons who consume alcohol heavily. (Whitlock, 2004 [37]); (Dieperink, 2010 [38]); (Proeschold-Bell, 2012 [39]) Persons identified as abusing alcohol and having alcohol dependence require treatment and consideration for referral to an addiction specialist.

HBV and HIV coinfection have been associated with poorer prognosis of HCV in cohort studies. (Thein, 2008a [40]); (Zarski, 1998 [41]) Due to overlapping risk factors for these infections and additional benefits of their identification and treatment, persons with HCV should be tested for HIV antibody and HBsAg using standard assays for screening (Moyer, 2013 [42]); (Centers for Disease Control and Prevention, 2008 [43]) (http://www.aafp.org/afp/2008/0315/p819.html [44] and http://www.cdc.gov/mmwr/preview/mmwrhtml/rr5708a1.htm [45]) and counseled how to reduce their risk of acquiring these infections, including through HBV vaccination (see below).
Patients with obesity and metabolic syndrome having underlying insulin resistance are more prone to have nonalcoholic fatty liver disease, which is a risk factor for fibrosis progression in HCV-infected persons. (Hourigan, 1999 [46]; Ortiz, 2002 [47]) Therefore, HCV-infected persons who are overweight or obese (defined by a body mass index 25 kg/m² or higher or 30 kg/m² or higher, respectively) should be counseled regarding strategies to reduce weight and improve insulin resistance via diet, exercise, and medical therapies. (Musso, 2010 [48]; Shaw, 2006 [49]) Patients with HCV infection and hyperlipidemia or cardiovascular comorbidities may also benefit from various hypolipidemic drugs. Prospective studies have demonstrated the safety and efficacy of statins in patients with chronic HCV and others with compensated chronic liver disease. (Lewis, 2007 [50]) Therefore, these agents should not be withheld in HCV-infected patients.

The severity of liver disease associated with chronic HCV infection is a key factor in determining the initial and follow-up evaluation of patients. Although patients with more advanced disease generally have a lower response to HCV therapy, they are also most likely to derive the greatest survival benefit. (Ghany, 2011 [51]) A liver biopsy can provide objective, semi-quantitative information regarding the amount and pattern of collagen or scar tissue in the liver, which can assist with treatment and monitoring plans. The Metavir fibrosis score (0-4) and Ishak fibrosis score (0-6) are commonly used to score the amount of hepatic collagen. A liver biopsy can also help assess the severity of liver inflammation, or of hepatic steatosis, and help exclude competing causes of liver injury. (Kleiner, 2005 [52]) However, the procedure has a low but real risk of complications, and sampling artifact makes its serial use in most patients less desirable. (Regev, 2002 [53]) Non-invasive methods frequently used to estimate liver disease severity include a liver-directed physical exam (normal in most patients), routine blood tests (eg, serum alanine transaminase, albumin, bilirubin, international normalized ratio levels, and complete cell blood counts with platelets), serum fibrosis marker panels, liver imaging (eg, ultrasound, computed tomography scan), and liver elastography. Simple blood tests (eg, serum aspartate aminotransferase/platelet ratio index) (Wai, 2003 [54] [http://www.hepatitisc.uw.edu/page/clinical-calculators/apri [55]) and assessment of liver surface nodularity and spleen size by liver ultrasound or other cross-sectional imaging modalities can help determine if patients with HCV have occult portal hypertension, which is associated with a greater likelihood of developing future hepatic complications in untreated patients. (Chou, 2013 [56]; Rockey, 2006 [57]) Liver elastography can provide instant information regarding liver stiffness at the point-of-care but can only reliably distinguish cirrhosis from non-cirrhosis. (Castera, 2012 [58]) Since persons with known or suspected bridging fibrosis and cirrhosis are at increased risk of developing complications of advanced liver disease, they require more frequent follow up; these persons also should avoid ulcerogenic drugs and receive ongoing imaging surveillance for liver cancer and varices. (Sangiovanni, 2006 [59]; Fontana, 2010 [60])

Exposure to infected blood is the primary mode of HCV transmission. HCV-infected persons must be informed of the precautions needed to avoid exposing others to infected blood. This is particularly important for persons who use injection drugs, given that HCV transmission in this population primarily results from the sharing of needles and other infected implements. Recently, epidemics of acute HCV due to sexual transmission in HIV-infected men who have sex with men have also been described. (van de Laar, 2009 [61]; Urbanus, 2009 [62]; Fierer, 2008 [63]) Testing and Linkage Table 2 [64] outlines measures to avoid HCV transmission. HCV is not spread by
sneezing, hugging, holding hands, coughing, or sharing eating utensils or drinking glasses, nor is it transmitted through food or water.

Evaluation by a practitioner who is prepared to provide comprehensive management, including consideration of antiviral therapy, is recommended for all persons with current (active) HCV infection.

Rating: Class IIa, level C

The definition of evaluation is: *Patient has attended a medical care visit with a practitioner able to complete a full assessment, the pros and cons of antiviral therapy have been discussed, and the patient has been transitioned into treatment, if appropriate.*

Improvement in identification of current (active) HCV infection and advances in treatment regimens will have limited impact on HCV-related morbidity and mortality without concomitant improvement in linkage to care. All patients with current HCV infection and a positive HCV RNA test result should be evaluated by a practitioner with expertise in assessment of liver disease severity and HCV treatment. Subspecialty care is required for persons with HCV infection who have advanced fibrosis/cirrhosis (stage III or above on METAVIR scale), including possible referral for consideration of liver transplantation. In the United States, only an estimated 13% to 18% of persons chronically infected with HCV receive treatment. (Holmberg, 2013 [65]) Lack of appropriate practitioner assessment and delays in linkage to care can result in negative health outcomes. Further, patients who are lost to follow-up fail to benefit from evolving evaluation and treatment options.

Commonly cited patient-related barriers to treatment initiation include contraindications to treatment (eg, medical or psychiatric comorbidities), lack of acceptance of treatment (eg, asymptomatic nature of disease, competing priorities, low treatment efficacy, and long treatment duration and adverse effects), and lack of access to treatment (eg, cost and distance to specialist). (Khokhar, 2007 [66]; Arora, 2011 [67]; Clark, 2012 [68]) Common practitioner–related barriers include perceived patient-related barriers (eg, fear of adverse effects, treatment duration, cost, and effectiveness), lack of expertise in HCV treatment, lack of specialty referral resources, resistance to treating persons currently using illicit drugs or alcohol, and concern about cost of HCV treatment. (Morrill, 2005 [69]; Reilley, 2013 [70]; McGowan, 2013 [71]) Some possible strategies to address these barriers are listed in **Testing and Linkage to Care Table 3** [72]. One strategy that addresses several barriers is co-localization of HCV screening, evaluation, and treatment with other medical or social services. Co-localization has already been applied to settings with a high prevalence of HCV infection (eg, correctional facilities and programs providing needle exchange, substance abuse treatment, and methadone maintenance) but is not uniformly available. (Islam, 2012 [73]; Stein, 2012 [74]; Bruggmann, 2013 [75])

A strategy that addresses lack of access to specialists (a primary barrier to hepatitis C care) is
participation in models involving close collaboration between primary-care practitioners and subspecialists. (Arora, 2011 [67]; Rossaro, 2013 [76]; Miller, 2012 [77]) Such collaborations have used telemedicine and knowledge networks to overcome geographic distances to specialists. (Arora, 2011 [67]; Rossaro, 2013 [76]) For example, Project ECHO (Extension for Community Healthcare Outcomes [http://www.echohcvexperts.com [78]]) uses videoconferencing to enhance primary care practitioner capacity in rendering HCV care and treatment to New Mexico’s large rural and underserved population. (Arora, 2011 [67]) Through case-based learning and real-time feedback from a multidisciplinary team of specialists (ie, gastroenterology, infectious diseases, pharmacology, and psychiatry practitioners), Project ECHO has expanded access to HCV infection treatment in populations that might have otherwise remained untreated.

Additional strategies of enhancing linkage to care could be adapted from other fields, such as tuberculosis and HIV, but remain to be evaluated for HCV infection. For example, use of directly observed therapy has enhanced adherence to TB treatment, and use of case managers and patient navigators has reduced loss of follow-up in HIV care. (Govindasamy, 2012 [79]) An assessment of efficacy and comparative effectiveness of these strategies is a crucial area of future research for patients with HCV infection. Replication and expansion of best practices and new models for linkage to HCV care will also be crucial to maximize the public health impact of newer treatment paradigms.

Links